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ABSTRACT 

The differential equations of Brillwin-Wigner perturbation 

theory are derived directly from the Schr'&inger equation, 

- - - - .  
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ON THE DIFFERENTIAL EQUATIONS OF BRILLOUIN-WIGNER 

PERTURBATION THEORY 

The Brillouin-Wigner perturbation theory was originally derived 

from the secular equations obtained from the spectral representation 

of the perturbed Schrgdinger equation in terms of the solutions 

of the unperturbed equationJ . This is in contrast to the 

Rayleigh-Schrodinger theory which is based on an expansion of the 

eigenvalue E and eigenfunction of the perturbed Schr&linger 

equation 
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in orders of the perturbation \J . 
the various orders are independent leads to a set of inhomogeneous 

In this case the condition that 

differential equations. These are in general easier to solve than 

the original eigenvalue equation, and have received a great deal of 

attention recently4”. The familiar spectral expansions for 9 
and E are obtained by expressing the various orders in terms of 

the eigenfunctions and eigenvalues of the unperturbed Hamiltonian H,. 
The object of this note is to point out that the Brillouin- 

Wigner perturbation theory may also be derived directly from the 

Schrodinger equation in a very simple way. The set of inhomogeneous 

differential equations obtained are of considerable interest in view 

of recent successful applications of the corresponding Rayleigh- 
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Schrzdinger equations. 

We begin by setting 

where the 

can then be written 

qck' are not yet specified. The Schrgdinger equation (1) 

The energy E occurring in the first term (but not in the summation) 

is now also expressed as an infinite sum 

where again the 

resulting equation can be collected to give 

E'"' are so far unspecified, The terms in the 

We now - define 

equat ion 

qCo) to be a solution of the unperturbed Schrzdinger 

and define the remaining q'"' as the solutions of the inhomogeneous 
differential equations obtained by equating to zero the individual 
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terms of the sum in (5): 

- 
The energies &('I can be obtained by multiplying (7) by g"' 
(assumed normalized) and integrating to get 

Since the gc"' and E(*' are not completely determined by 

equation (7), it is natural and convenient to fix them by making all 

the % - - '  Ck>l) orthogonal to 
*Y c m \  

this is always done in conventional Brillouin-Wigner theory. 

becomes 

Then (8) 

The nth order function for a particular state 4 may 

be expanded in terms of the complete set of unperturbed eigenfunctions 

Q'e') . The coefficients in the expansion can be found by 
c 

c 0) 
3 

multiplying (7) for the state 4 by \Ej and integrating to get 
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Successive application of this equation leads to the usual Brillouin- 

Wigner formula 

Jh 
j, . . . -  - 

#k 
where 

Y4) By substituting for from equation (12) into (10) the familiar 

Brillouin-Wigner energy formula is obtained: 

The first order Brillouin-Wigner differential equation for 
G'') 

6 has been derived previously by Young and March by an operator 

technique. The functions have also been derived in the 

reaction operator formalism by LBwdin , which is formally equivalent 
to equation ( 7 ) .  

p) 
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However, the formal inverse operator solutions of 

perturbation equations have not been fruitful in suggesting their 

realization in explicit form. 

attention on the differential equations themselves , and show how 
easily they may be obtained from the perturbed Schrodinger equation. 

It therefore seems worthwhile to focus 
8 
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Furthermore, the technique used is heuristic in that it suggests new 

perturbation schemes which are more practical than the Brillouin- 

Wigner and more efficient than the Rayleigh-SchrEdinger. 

. 
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